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Abstract: Determination of the conformational flexibility of the furanose ring is of vital importance in
understanding the structure of DNA. In this work we have applied a model of furanose ring motion to the
analysis of deuterium line shape data obtained from sugar rings in solid hydrated DNA. The model describes
the angular trajectories of the atoms in the furanose ring in terms of pseudorotation puckering amplitude (q)
and the pseudorotation puckering phaseæ. Fixing q, the motion is thus treated as Brownian diffusion through
an angular-dependent potentialU(æ). We have simulated numerous line shapes varying the adjustable parameters,
including the diffusion coefficientD, pseudorotation puckering amplitudeq, and the form of the potential
U(æ). We have used several forms of the potential, including equal double-well potentials, unequal double-
well potentials, and a potential truncated to “second order” in the Fourier series. To date, we have obtained
best simulations for both equilibrium and nonequilibrium (partially relaxed) solid-state deuterium NMR line
shapes for the sample [2′′-2H]-2′-deoxycytidine at the position C3 (underlined) in the DNA sequence
[d(CGCGAATTCGCG)]2, using a double-well potential with an equal barrier height ofU0 ) 5.5kBT (∼3.3
kcal/mol), a puckering amplitude ofq ) 0.4 Å, and a diffusion coefficient characterizing the underlying stochastic
jump rateD ) 9.9× 108 Hz. Then the rate of flux for the C-D bond over the barrier, i.e., the escape velocity
or the overall rate of puckering between modes, was found to be 0.7× 107 Hz.

Introduction

The furanose ring plays a pivotal role in DNA structure. In
general, A-form DNA exhibits a C3′-endo configuration (see
Figure 1b), and B-form DNA exhibits C2′-endo configuration
(see Figure 1c),1 and therefore the 2′-deoxyribose ring must have
some degree of inherent conformational flexibility. Because the
furanose ring may act as a buffer between the structurally labile
phosphodiester backbone and the rigidly stacked base pairs,
determination and quantification of the conformational flexibility
of the furanose ring is of vital importance in understanding the
structure of DNA.

X-ray crystallography and solution NMR have both contrib-
uted high-resolution structures of DNA, but neither technique
has conclusively addressed the question of the conformational
flexibility of the furanose sugars. Due to steric hindrance and
ring strain, the five-membered furanose ring must be nonplanar,
and conformational changes are accomplished by changes in
the dihedral bond angles of the furanose ring. Due to the limited
resolution of X-ray structures, conformational motions of the
furanose ring would have to be directly deduced from motions
of all the heavy atoms within the sugar, where whole amplitudes
are small and on the order of<0.5 Å, or indirectly from
correlation to the delta torsion angle.2

To determine dynamic amplitudes, crystallographic data are
usually analyzed in terms of rigid body models, in which the
constituent atoms of the furanose ring are assumed to move as
a unit, as is the coupled base and its Watson-Crick pair part-
ner.3,4 Such methods are very informative of amplitudes of mo-
tion around assumed motional axes.

Solution NMR can, in principle, determine dynamic ampli-
tudes, and rates to atomic resolution, but in the case of DNA,
results deduced from various types of NOE, scalar coupling,
and relaxation studies are far from unanimous in their views.
Each of the solution NMR methods mentioned has strengths
and weaknesses when applied to studies of localized motions.
NOE’s between protons within furanose rings are sensitive to
the averaged inverse 6th power of nuclear distances,〈1/r6〉, but
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Figure 1. (a) Nomenclature for the carbon positions within a
deoxyribose ring. (b) Schematic of C3′-endo conformation. (c) Sche-
matic of C2′-endo conformation. (d) [2′′-2H]-2′-Deoxycytidine nucleo-
side used in this study.
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the exact nature of the averaging, or even its presence, can be
obscured by spin diffusion effects. Scalar couplings can be
related to dihedral angles within the context of a Karplus-like
model, whose semiempirical extension to coupled protons in
DNA is complicated by cross-relaxation.5 Also, the small
magnitudes of scalar couplings preclude an insight into the
dynamic nature of furanose ring conformation. The so-called
model-free relaxation analysis6,7 is very widely used in protein
studies, and several such studies of DNA dynamics have
appeared.8-10 Like all methods based on order parameters,
model-free studies assume the local, internal motions in question
occur on time scales widely separated from the overall molecular
motion. For DNA duplexes on the order of 12 base pairs in
length, this suggests that local motions of the furanose ring must
occur on a time scale much less than a nanosecond. If this fails
to be the case, order parameter studies will be less useful for
accurately quantifying furanose ring dynamics.

Solid-state deuterium NMR brings its own particular strengths,
weaknesses, and limitations to DNA studies. Its limitations are
of a practical nature. It relies on selective isotopic labeling and
thus cannot easily survey the wealth of sites accessible by
crystallography and solution NMR. A strength of the technique
is the wide dynamic range of motion that can be probed by
solid-state NMR methods, a fact that follows directly from the
broad solid-state NMR line width of deuterium (∼200 kHz).

The most common and simple models of furanose ring
dynamics portray it as an exchange between two conformers,11-14

although recent experimental analyses of proton scalar coupling
constants in DNA assume exchange between a greater distribu-
tion of conformers.15 Although activated exchange between
discrete conformations of the furanose ring is a good ap-
proximation of internal molecular motions when kinetic barriers
exceed 5.8 kcal/mol (10kBT), theoretical estimates of the barrier
to exchange between C2′-endo and C3′-endo (see Figure 1, parts
a and b respectively) range from only 0.5 kcal/mol,12 a
remarkably low barrier indicating virtually free pseudorotation,
to about 2-5 kcal/mol.16 Therefore discrete site exchange may
be a poor approximation for furanose ring motions in DNA. A
more physically realistic model of furanose ring motion is almost
certainly necessary for accurate analysis of NMR relaxation and
line shape data.

In this paper we present a model of furanose ring dynamics
in which angular displacements of C-D bonds are treated
according to the Smoluchowski theory of Brownian motion
through a potential barrier. Within the context of this theory,
analysis of solid-state deuterium NMR equilibrium and non-
equilibrium line shapes requires assumptions regarding the
trajectories of the C-D bonds and the form of the potential

barriers encountered as the C-D bonds move along these
trajectories. We will show that solid-state deuterium line shapes
vary markedly as a function of the assumed trajectories and
potential barrier. Theoretically derived models of internal motion
of DNA can thus be directly tested by solid-state deuterium
NMR.

The sequence of interest for this particular study is [d(CGC-
GAATTCGCG)]2, where C3 (underlined) is [2′′-2H]-2′-deoxy-
cytidine, shown in Figure 1d. This sequence was the first
successfully crystallized full turn of DNA in the B-form,
performed by the Dickerson research group.17 This sequence
contains the binding site for theEcoRIrestriction-modification
system,-GVAATTC-, where the “V” indicates the cutting site
for the endonuclease, and the underlined residue is the target
for the methyltransferase. The structure and dynamics of this
particular sequence have been studied extensively by numerous
experimental techniques including X-ray crystallography,4,17-19

atomic force microscopy,20 solution NMR,13,21-23 and solid-
state NMR.14,24-30 In particular, the furanose ring dynamics have
been studied for this sequence in detail.14,27-30

We have obtained excellent fits for both equilibrium (fully
relaxed) line shapes and nonequilibrium (partially relaxed) line
shapes that demonstrate the utility of deuterium NMR for
defining the trajectories and energetics of internal biomacro-
molecular motions in an exact and quantitative manner.

Materials and Methods

Chemical Synthesis of Selectively Deuterated DNA.To investigate
furanose ring dynamics, [2′′-2H]-2′-deoxycytidine (Figure 1d) was
prepared by the method of Robins et al. with some minor modifications
to the solvent systems.31 [2′′-2H]-2′-Deoxycytidine was converted to
its N4-benzoyl-5′-O-(DMT)-2′-dC-3′-CED-phosphoramidite derivative
as described previously.32 Oligonucleotides were synthesized by using
an ABI Model 394 automated DNA/RNA synthesizer and purified on
Sephadex size-exclusion columns as described previously, salted (10%
NaCl by weight), packed into a 5 mmsolid-state NMR Kel-F sample
chamber, and hydrated by vapor diffusion in a humidity chamber
containing saturated salts in2H-depleted water (75% relative humidity
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at 20 °C).33 Water content was quantified gravimetrically by the
parameterW (moles of water molecules/moles of nucleotide) and is
accurate to(1 water per nucleotide.

Solid-State NMR Spectroscopy.All experiments were performed
on a home-built NMR spectrometer, operating at a deuterium Larmor
frequency of 76.776 MHz, corresponding to a magnetic field strength
of 11.75 T. A quadrupolar echo pulse sequence with an eight-step phase
cycling scheme was implemented with a delay of 40µs between 90°
pulses (typically, 2.4-3.0 µs in duration) and a dwell time of 200 ns
during acquisition. Data acquisition was initiated prior to the echo
maximum. The time domain data were left-shifted and apodized with
3000 Hz Lorentzian line broadening prior to Fourier transformation.
Partially relaxed line shapes and spin-lattice relaxation times were
determined by using an inversion recovery pulse sequence, which
incorporated a 180° composite pulse to ensure broadband excitation.34

To obtain powder-averaged Zeeman spin-lattice relaxation times,〈T1Z〉,
the integrated intensity of the powder spectrum was monitored as a
function of recovery time and analyzed using a nonlinear least-squares
fitting routine.35 Please note that in all experimental spectra, the center
isotropic peak is due to residual HDO.

Calculation of Dynamically Averaged Deuterium Line Shape
Spectra.The geometry of the furanose ring is described by the positions
of the 4 carbon atoms and the single oxygen atom, where the cyclic
nature of the furanose ring actually reduces the number of independent
geometrical parameters. The concept of pseudorotation was originated
by Kilpatrick et al.36 to treat the conformation of cyclopentane, and
through the years has been adapted to a number of applications
including the description by Altona et al. of the conformation of
furanose rings in DNA.11

A number of general models of pseudorotational motion have been
developed for furanose rings. In particular, Herzyk and Rabczenko37

developed a general geometrical model of furanose ring conformation.
This model predicts structures of theâ-D-furanoside fragments that are
in excellent agreement with crystal structures. The Cartesian coordinates
of the jth atom in the furanose ring are, according to Herzyk and
Rabczenko:

whereRj is the polar angle locating thejth bond,rj is the radius of the
projection of the pseudorotation trajectory onto the plane of the
undistorted ring,Rj is the distance from the geometric center of the
planar five-membered ring to the center of the projection of thejth
trajectory onto the plane of the undistorted furanose ring, assumed to
be circular in ideal pseudorotation (see Figure 2),q is the puckering
amplitude (in Å), andæ is the pseudorotation phase. Becauserj andRj

can be determined from the geometry of the furanose ring (see eqs 3
and 4 from Herzyk and Rabczenko), eqs 1a-c reduce the dynamics of
the furanose ring to two parameters,q andæ. If q is fixed, the motion
of the furanose ring is only dependent uponæ.

Equation 1 describes the coordinates of the heavy atom framework
of the furanose ring. However, the experimental data in this deuterium
NMR study are not obtained for a member of the furanose ring itself,
but rather for a deuterium substituent at the 2′′ site (see Figure 1d).

We have used an extension of the basic model of Herzyk and Rabczenko
to generate atomic coordinates for each ring substituent, and specifically
for the deuterium atom at the 2′′ site. This extension of the Herzyk-
Rabczenko model simply assumes that the carbons in the ring are sp3

hybridized, i.e., the bond configuration has tetrahedral symmetry.
To calculate and visualize the furanose ring trajectories, we used a

C++ software library, molecular tool kit (mtk).38 The mtk library allows
the modeling of molecules similar to a plastic “ball-and-stick” model.
In such a model, each atom has a certain configuration of “holes”,
reflecting the allowed bond hybridization. In the case of carbon, this
configuration is typically tetrahedral. Tetrahedral symmetry implies that
if the geometry of two bonds to a single carbon is known, then the
configuration of the other two bonds can be calculated, based upon
the known ones. The carbon element in the mtk library supports by
default tetrahedral symmetry and the coordinates for a substituent
attached to such a carbon may therefore easily be extracted. In this
particular case, the carbon tetrahedral symmetry is oriented to first
satisfy the geometry of the ring itself, as calculated from the pseu-
dorotation coordinatesq andæ, then the coordinates of any substituent
are calculated.

With these assumptions we have determined furanose ring dynamics
in terms of the trajectory of the deuterium atoms (Figure 3a). In Figure
3b, multiple trajectories of the 2′′ deuteron are displayed as a function
of the puckering amplitudeq. In Figure 3c,d, corresponding trajectories
are shown for the 2′ carbon atom.

To simulate the solid-state deuterium NMR line shape we need to
transform the Electric Field Gradient (EFG) tensor from the frame of
its Principal Axis System (PAS) to a molecular fixed frame (MF).39

The deuterium high-field quadrupolar coupling Hamiltonian is given
by

whereQ is the nuclear quadrupole moment,Ĩ is the nuclear spin angular
momentum operator, andṼ is the electric field gradient (EFG) tensor.
For a deuterium nucleus thez-axis of the principal axis system (PAS)
of the EFG tensor is parallel to the C-D bond axis. The deuterium
EFG tensor is approximately axial and has the form

whereq is the field gradient. The molecular-fixed (MF) frame, defined
in Figure 2, is related to the coordinates of the heavy atoms of a planar
(and fictitious) furanose ring.
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Figure 2. Representation of the projection of the furanose ring atomic
trajectories during rigid pseudorotation. Adapted from ref 37.
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Since the EFG tensor is assumed to be axially symmetric, only two
Euler angles,θ andφ, are needed to describe the transformation from
the PAS frame to the MF frame. The anglesθ andφ were calculated
by the mtk library as a function of puckering amplitudesq and puckering
phaseæ, and subsequently fed into the deuterium line shape simulation
program.

Analysis of equilibrium and nonequilibrium solid-state deuterium
NMR line shapes follows the equation of motion for the transverse
magnetization of the spin 1 nucleus:

where the “+” refers to the 0f +1 transition and the “-” refers to
the -1 f 0 transition.R(Ω) is an operator that describes the specific
dynamics in question, and may be represented as a linear operator in
the case of continuous motions or as a matrix in the case of discrete
jumps.Ω is the solid angle that relates the principal axis (PAS) frame
of the EFG tensor to the lab-fixed frame. Because the EFG tensor is
approximately symmetric, a single static angleθ relates its PAS frame
to the static field direction. Hence the angular dependent frequencies
are:

wheree2qQ is the quadrupolar coupling constant,h is Planck’s constant,
and P2(cosθ) is the second-order Legendre polynomial. Molecular
motion modulatesθ and thus additional transformations are required
to one or more frames intermediate to the PAS frame and the LAB
frame. The form of these additional transformations is obtained by using
the addition properties of spherical harmonics.40

It remains to assume a form of the operatorR(Ω). If the pseudoro-
tation motions were freely diffusive,R(Ω) would simply be the three-
dimensional diffusion operator

where D is the diffusion coefficient associated with the stochastic

motion of the C-D bind. As mentioned, a large body of theoretical
and empirical data argue that there are significant energy barriers to
structural changes in furanose rings.

A form of Smoluchowski’s diffusion equation

has been used to describe the motion of heme groups in proteins,41

amino acid side chains in proteins,42 and lipid chains.43 In eq 7,æ is
the pseudorotation phase angle,U(æ) is the potential energy as a
function of æ, andP is the orientation probability distribution for a
C-D bond. Note that by using the pseudorotation phase, the problem
has been rendered in 1-dimensional form. For the purpose of solving
eq 4 numerically, the operator

can be discretized. Following the procedure of Nadler and Schulten,44

R can be represented by a matrix with elements

wherePi is the a priori probability given as

where

andτc is the correlation time. We may express the correlation timeτc

in terms of the diffusion coefficient,D, or the kinetic rate constantk
and a unit angular stepδ as

It should be noted that the diffusion coefficientD is not for motion
between two sugar conformations, but for an excursion along the
energetic pathway, i.e., between two adjacent and discrete sites along
the trajectory. Discussion of rates between sugar conformations is given
in the Conclusion.

To simulate the deuterium line shape of the mobile C2′-D bond, a
form of the potentialU(æ) must be chosen. Theoretical studies of the
conformational dynamics of furanose rings in DNA and RNA assume
a double-well potential,1,12 with well minima closely corresponding to
the C2′-endo and C3′-endo configurations of the furanose ring, shown
in Figure 1.

A simple approximation to a double well potential has the form

whereU0 is the barrier height. Assuming values forU0, a puckering
amplitudeq, anglesθ andφ for each of the 10 sites (determined by
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Figure 3. Calculated carbon and deuterium trajectories. (a). Trajectory
of the 2′′ deuteron for the puckering amplitudeq ) 0.4 Å, along with
the associated 2′ carbon trajectory. (b) Deuterium trajectories as a
function of puckering amplitudeq. (c) Enlarged view of the carbon
trajectory at puckering amplitudeq ) 0.4 Å. Note the figure eight shape.
(d) Enlarged view of the carbon trajectories as a function of puckering
amplitudeq. Note that two different views are shown.
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the trajectory calculations mentioned above), and the diffusion coef-
ficient D, a motionally averaged deuterium line shape can be calculated.
More complicated forms forU(æ) may be obtained by expanding in a
Fourier series inæ and truncating at appropriate orders, or raising the
baseline of the potential surface. Truncated forms forU(æ) will be
investigated in addition to the potential in eq 12.

A natural approach would be to assume that pseudorotation involves
exchanges between a discrete number of sites on the pseudorotation
trajectory. In some cases, only two sites are assumed,14 but this has
produced poor results for simulating solid-state deuterium NMR spectra.
For our simulations we have discretized a trajectory for the furanose
ring to 10 sites, which is a sufficient number to effectively simulate a
continuous process as has been shown,43,45 and site populations are
determined by eq 10. For anN-site exchange process, eq 4 becomes

where the complex transverse magnetizationM( ) MX,( + iMY,(. The
coherence frequencyωi is a function of the anglesθ and φ and the
angles (Φ,Θ) that relate the molecule-fixed frame to the lab frame,
i.e.

and the matrix elementsRij are given by eq 9. Numerical solutions to
eq 13 were accomplished with the program MXET1, developed by the
Vold group.46,47 Please note that center spikes in all simulated spectra
are due to dc offset.

Results and Discussion

Deuterium Line Shape and Relaxation Data for the 2′′
Deuteron in C3. Figure 4a,b shows the C3 line shape at
hydration levelsW ) 6 and 11.6, respectively. The classic Pake
doublet is visible in the lower hydration level only (Figure 4a),
and is lost upon increased hydration (Figure 4 b), where there

is significant motional averaging. The horns of the spectrum
have shrunk, and there are three distinct spectral peaks visible
within (indicated by arrows). The sharp middle peak is from
residual HDO. The spin-lattice relaxation time,〈T1Z〉, was
determined to be 42( 5 ms, and a series of partially relaxed
line shapes are shown in Figure 11a.

Types of DNA Motion. In addition to simulating the motion
of the particular sugar ring in question, it is necessary to resolve
other types of motion that are present in the sample. Hydrated
solids have numerous advantages when resolving DNA motions.
Bending and torsional motions can be neglected for short
DNAs.45 Also, end-to-end tumbling can be neglected, as this
type of motion is restricted in the solid state, even with a sample
of intermediate hydration (10< W < 20). Last, there is simple
rotation around the helical axis. Previous work has shown that
this rotation is effectively simulated by a six-site jump,45 with
a half angle ofθ ) 20° (orientation of the C2′-D bond with
respect to the longitudinal helix axis), values ofφ ) 0°, 60°,
120°, 180°, 240°, and 300° for the six sites, and a rate constant
of k ) 104 Hz. Use of these parameters for the overall helix
motion has produced good agreement in previous work for
several different DNA samples with different types of local
motions occurring.14,45 Therefore, these parameters will be
considered well determined and remain constant for our
simulations of the local motions. The resulting spectra will then
be a superposition of this longitudinal helical rotation and the
local motion of the furanose ring.

Simulations of Furanose Ring Dynamics with Use of the
Brownian Trajectory Model. The first step toward developing
a dynamical model for comparison to experimental data is to
determine the model’s dependence on the various adjustable
parameters. There are several adjustable parameters within the
simulations, including the diffusion coefficientD, the puckering
amplitude q (which determines the spatial position and the
trajectories of the atoms in the sugar ring), and the actual form
of the potentialU(æ). We have generated a library of simulations
to illustrate the dependence of our model upon these adjustable
parameters.

Figure 5a-c illustrates the forms of the first three potentials
we have used for our simulations. Figure 5a shows a double
well potential with equal barrier heights, described analytically
by eq 12. Figure 5b shows a double well potential with unequal
barrier heights, as described in eq 15. Figure 5c shows a potential
described by eq 16, which is a second-order truncation of the
Fourier series. Particular simulations will refer to these to
indicate the form of the utilized potential energy surface.

Figure 6a-e shows a series of deuterium line shape simula-
tions, varying theæ-independent diffusion coefficient,D,
between adjacent and discrete coordinates along the trajectory.
Figure 6 shows the model’s dependence onD by varying the
coefficient over several simulations, from a value ofD ) 1.9
× 105 kHz (Figure 6a) to 1.9× 109 kHz (Figure 6e). The
puckering amplitude is fixed atq ) 0.4 Å, the potential is
described by eq 12 and Figure 6a, and the barrier height is fixed
at U0 ) 5kBT (∼2.9 kcal/mol). There is a dependence of the
line shapes upon this parameter observed over several orders
of magnitude.

Figure 6f-j shows a series of simulations as a function of
the puckering amplitudeq, from a value ofq ) 0.2 Å (Figure
6j) to q ) 0.6 Å (Figure 6j), while keeping the parametersD )
9.9 × 108 Hz andU0 ) 5kBT constant, and the potential is
described by eq 12 and Figure 5a. There is a dramatic
dependence on this parameter, which is fundamentally a measure
of amplitude of the furanose motion. The motion of the deuteron

(45) Alam, T. M.; Drobny, G. P.Chem. ReV. 1991, 91, 1545-1590.
(46) Greenfield, M. S.; Ronemus, A. D.; Vold, R. L.; Vold, R. R.; Ellis,

P. D.; Raidy, T. E.J. Magn. Reson.1987, 72, 89-107.
(47) Vold, R. R.; Vold, R., L.Deuterium Relaxation in Molecular Solids;

Academic Press: San Diego, 1991; Vol. 16, pp 85-171.

Figure 4. Line shapes for (a) [2′′-2H]-C3 (underlined) from [d(CGC-
GAATTCGCG)]2 with W ) 6 and (b) [2′′-2H]-C3 with W ) 11.6
(symmetrized). Note the three distinct spectral peaks indicated by the
arrows; the center isotropic peak is due to residual HDO.
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increases as the puckering amplitude increases, and this is
exhibited as increased motional averaging of the deuterium line
shape.

Figure 7a-d shows four series of partially relaxed simulated
spectra corresponding to barrier heightsU0 of 4kBT, 5kBT,

5.5kBT, and 6kBT, respectively. The null of the relaxation
inversion has a distinct dependence on the potential barrier
height. This indicates that analysis of the barrier height will be
a significant tool for determining an accurate model and
parameter set to simulate experimental data. Table 1 summarizes
the〈T1Z〉 values calculated by integration of the partially relaxed
simulated spectra and fitting to an exponential curve.

In many studies of furanose ring motion, the barriers for the
double well potential are unequal. For example, Levit and
Warshel calculated a barrier of<2 kcal/mol at O1′-endo, near
a pseudorotation phase angle of 90-100°.12 Olson and Sussman
proposed a potential energy function that was used to estimate
the pseudorotational motions of ribose and 2′-deoxyribose
sugars.16 This potential, which included nonbonded, torsional,
and valence angle strain contributions in addition to an intrinsic
gauche energy term to account for the puckering preferences,
was (for 2′-deoxyribose) essentially a double well potential with
barriers of 2 kcal/mol at a pseudorotation phase angle of about
70-75°, and a second barrier of about 6 kcal/mol at a
pseudorotation phase angle of roughly 270°.

Figure 5. Graphs of the analytical forms of the different potentials
used in this investigation: (a) for eq 12 representing an equal double
well potential, (b) for eq 15 representing a double well potential with
unequal barrier heights, and (c) for eq 16 representing the second-
order truncation of the Fourier series. A series of potential energy
surfaces, d-f, where the one of the two wells is raised relative to the
other, but the barrier heights are kept equal. The baseline has been
raised from zero to approximately (d) 1/6 the height of the barrier, (e)
1/3 the height of the barrier, and (f) 1/2 the height of the barrier. The
barrier heights have remained equal at a value ofU0 ) 5kBT (2.9 kcal/
mol), so the baseline has been raised to approximately (d) 0.5, (e) 1,
and (f) 1.5 kcal/mol, respectively.

Figure 6. A series of simulations, a-e (discussed in the text), varying
the diffusion coefficient,D, for the potentialU(æ) ) (U0/2)(1- cos2æ)
with U0 ) 5kBT: (a) D ) 1.9× 105 Hz, (b) D ) 1.9× 106 Hz, (c) D
) 1.9 × 107 Hz, (d) D ) 1.9 × 108 Hz, and (e)D ) 1.9 × 109 Hz.
The constant parameters are a puckering amplitudeq ) 0.4 Å andU0

) 5kBT. A series of simulations f-j (discussed in the text) varying the
puckering amplitudeq, for the potentialU(æ) ) (U0/2)(1 - cos2æ):
(f) q ) 0.2 Å, (g) q ) 0.3 Å, (h) q ) 0.4 Å, (i) q ) 0.5 Å, and (j)q
) 0.6 Å. The constant parameters are diffusion coefficientD ) 9.9×
108 Hz andU0 ) 5kBT.

Figure 7. A series of partially relaxed simulated line shapes varying
the height of equal potential barriers. The barrier heights are (a)U0 )
4kBT, (b) U0 ) 5kBT, (c) U0 ) 5.5kBT, and (d)U0 ) 6kBT. Note that
the null of the inversion (crossover point) has a distinct dependence
on the barrier height. The constant parameters are diffusion coefficient
D ) 9.9 × 108 Hz and puckering amplitudeq ) 0.4 Å.

Table 1. Comparison of Spin-Lattice Relaxation Timesa

DNA sample or potential barrier
height for simulations 〈T1Z〉, ms

[2′′-2H]-C3 (underlined) from the DNA
sequence, [d(CGCGAATTCGCG)]2

42 ( 5

2 × 4kBT 19
2 × 5kBT 34
2 × 5.5kBT 47
2 × 6kBT 65

a A series of spin-lattice relaxation times, for [2′′-2H]-C3 (under-
lined) from the DNA sequence [d(CGCGAATTCGCG)]2, compared
to several simulations with variable but equal potential barrier heights.
The simulations vary the barrier heightU0 for the potential form
U(æ) ) (U0/2)(1 - cos2æ), from eq 12. The constant parameters are
diffusion coefficientD ) 9.9 × 108 Hz and puckering amplitudeq )
0.4 Å.
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For simulations using an unequal double well potential, we
have used the following analytical form,

Equation 13 is shown graphically in Figure 5b. Figure 8a-d
shows a series of simulations where one of the two barriers has
its amplitude (U0) varied from 6kBT (Figure 8a) to 10kBT (Figure
8d), while the height of the second barrier parameter remains
constant at 5kBT. The puckering amplitude ranges fromq )
0.2 Å, for the top simulations, toq ) 0.6 Å, for the bottom in
increments of 0.1, and the diffusion coefficient remains constant
at D ) 9.9 × 108 Hz. For the simulations with a 5kBT and
6kBT barrier, as well as 5kBT and 10kBT, there is little deviation
from the forms of the line shapes with equal 5kBT barriers
(Figure 6), but with a 7kBT or 8kBT height for the second barrier,
there is a noticeable difference for larger values of the puckering
amplitudeq.

The potential function shown in eq 15 and Figure 5b is a
simple approximation of the potential surface proposed by Levitt
and Warshel12 and Olson.16 Such potentials have been proposed
in part on the basis of X-ray crystallography data, which
indicated the furanose structures are clustered tightly around
the 2-endo and 3-endo configurations, and by NMR scalar
coupling data, which similarly support the existence of two
dominant equilibrium conformations. Ulyanov et al. presents a
statistical analysis of scalar couplings in DNA furanose rings
that support the existence of more than two equilibrium

conformations of the furanose ring.15 To investigate the pos-
sibility of such effects, a form forU(æ) truncated to “second
order” is explored:

A graph of the angular dependence of the potential in eq 16
is shown in Figure 5c.

Finally, simulations have shown dependence upon raising the
baseline of one well with the potential relative to the other
well. Figure 5d-f shows a series of potentials where the base-
line has been raised from zero to approximately (d)1/6 the height
of the barrier, (e)1/3 the height of the barrier, and (f)1/2 the
height of the barrier. The barrier heights have remained equal
at a value ofU0 ) 5kBT (2.9 kcal/mol), so the baseline has
been raised to approximately (d) 0.5, (e) 1, and (f) 1.5 kcal/
mol, respectively. Parts a, b, and c in Figure 9 are series of
simulations corresponding to the aforementioned potentials (i.e.
from Figure 5, parts d, e, and f, respectively), with the diffusion
coefficientD ) 9.9× 108 Hz and the puckering amplitudeq )
0.4 Å. As can be seen there is indeed a dependence upon having
unequal potential well depths as well as unequal potential barrier
heights.

Comparison of Experimental Spectra to Simulations.
Previous work has shown fair agreement between a motionally
averaged line shape for [2′′-2H]-C9 from the Dickerson sequence
and a two-site jump model for the furanose ring motion, with
a half-angle amplitude of 38°.14 While there was reasonable
agreement between the fully relaxed experimental line shape

Figure 8. A series of simulations (discussed in the text) using eq 15
to describe the potential energy surface, where one of the two barriers
is larger for a double well potential. For these simulations, one barrier
remains at 5kBT, and other is varied from (a) 6kBT, (b) 7kBT, (c) 8kBT,
and (d) 10kBT. The constant parameters are diffusion coefficientD )
9.9 × 108 Hz and varying the puckering amplitude in each set fromq
) 0.2 to 0.6 Å, in steps of 0.1 Å, from top to bottom.

U(æ) )
U01

2
(1 - cos2æ), 0 < æ < π (15a)

U(æ) )
U02

2
(1 - cos2æ), π < æ < 2π (15b)

Figure 9. A series of simulations (discussed in the text) using the
potential energy surfaces from Figure 5d-f. The well depth has been
raised from zero to approximately (a) 0.5, (b) 1, and (c) 1.5 kcal/mol.
The simulation parameters areD ) 9.9 × 108 Hz, U0 ) 5kBT (2.9
kcal/mol), and varying the puckering amplitude in each set fromq )
0.2 to 0.6 Å, in steps of 0.1 Å from top to bottom.

U(æ) )
U0

2
(1 - (cos2æ + cos4æ)) (16)
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and the two-site jump simulation, the model could not effectively
simulate nonequilibrium (partially relaxed) line shapes. Ad-
ditionally, a Brownian diffusion model with a single axis of
angular motion has shown success simulating equilibrium,
motionally averaged line shapes, but also could not accurately
simulate partially relaxed line shapes.27,30 Now it becomes
necessary to utilize our new model to attempt to obtain accurate
simulations of experimental data.

Figure 10 shows a best-fit comparison for the fully relaxed
(equilibrium) line shape for C3 atW ) 11.6 (Figure 4b). The
parameters for this simulation are a diffusion coefficientD )
9.9 × 108 Hz, puckering amplitudeq ) 0.4 Å, and an equal,
double-well potential with equal wells and equal barrier heights
of U0 ) 5.5kBT. As can be seen, there is excellent agreement,
even down to the small details of the experimental data. The
three peaks (arrows in Figure 11) observed in the experimental
spectrum are replicated in the simulated spectrum. As found
from simulations, the equilibrium line shape does not have a
dramatic dependence on the barrier height. However, Figure
7a-d and Table 1 show that the relaxation pattern does have a
great dependence on the barrier height.

Figure 11 shows a direct comparison of (a) the partially
relaxed experimental line shapes for C3 atW ) 11.6 and (b)
the partially relaxed simulated line shapes with identical delay
times. The simulation parameters are identical to those in Figure
11. Additionally, the〈T1Z〉 of C3 atW ) 11.6 was found to be
42 ( 5 ms, which can be compared to relaxation times for
simulations from Table 1, where our model with the best fit
parameters has a〈T1Z〉 of 47 ms. When comparing the fully
and partially relaxed experimental line shapes with the best fit
simulations, as well as the〈T1Z〉 values, we conclude that the
C3 furanose ring is diffusing through a double 5.5kBT barrier
(∼2.9 kcal/mol), with a puckering amplitude of 0.4 Å and a
diffusion coefficient of 9.9× 108 Hz. A discussion of the
physical relevance of these simulation parameters follows.

Conclusions

The ultimate goal is to use this model to determine the
dynamics of any furanose ring, as determined from solid-state
deuterium NMR. It is now necessary to look at the utility of
the model for simulating different line shapes. When the
amplitudes of motion are small (<20°), or in the slow motion
regime (<106 Hz), it is not easy to distinguish one simulation
from another (one can compare parts a and f of Figure 6 as
examples). However, one can, upon inspection, determine that
the furanose ring motions are in these regimes.

The utility of this model arises when the motions are in the
large amplitude (>30°) and intermediate time scale regime
(∼106-108 Hz). This model shows a great dependence on its
parameters in these regimes, as illustrated in the series of
simulations in Figure 6. Line shape inspection and comparison
can be used initially to determine general magnitudes of the
amplitude of angular motion and the time scale of these motions.
However, if one surveys the library of simulations presented,
there is often a similarity between simulated line shapes with
different parameters. Therefore, a second means to distinguish
simulations from each other becomes necessary, namely to
utilize the relaxation information from partially relaxed line
shapes and spin-lattice relaxation times.

For example, if one wanted to compare the simulations shown
in parts d and e of Figure 6 (which differ in their value for the
diffusion coefficientD from 1.9 × 108 Hz to 1.9× 109 Hz,
respectively) to experimental data, differences between their
equilibrium line shapes might be easily obscured under the
spectral noise in the experimental data. However, their spin-
lattice relaxation times,〈T1Z〉 values, are very different, with
values of〈T1Z〉 ) 89 ms for the simulation in Figure 6d (D )
1.9 × 108 Hz) and〈T1Z〉 ) 18 ms for the simulation in Figure
6e (D ) 1.9 × 109 Hz).

A comparison of relaxation information is useful for deter-
mining a reasonable potential energy surface as well. The
question remains to be asked whether a certain form for the
potential can be discerned from another, and if there is a better
fit when comparing to actual spectroscopic data. One can use
line shape inspection again to obtain a general idea of parameter
values, as there is a dependence upon unequal barrier heights
with a very large value for the puckering amplitude (q > 0.4
Å), as shown in Figure 8. However, when the puckering
amplitude is smaller (q e 0.4 Å), the line shapes are not easily
distinguished. Therefore an investigation of the relaxation
parameters is necessary. Table 2 indicates the〈T1Z〉 values for
several forms of the potential,U(æ), and shows there is a distinct
dependence of the relaxation on the barrier height of an unequal
barrier. The model shows a marked dependence of the equi-
librium line shapes upon relative changes in well depth as well,
indicated in Figure 10.

Figure 10. Best-fit comparison of simulation to experiment. (a)
Simulation using the following parameters: potentialU(æ) ) (U0/2)(1
- cos2æ), barrier magnitudeU0 ) 5.5kBT, diffusion coefficientD )
9.9 × 108, and puckering amplitudeq ) 0.4 Å. (b) [2′′-2H]-C3
(underlined) from [d(CGCGAATTCGCG)]2 with W ) 11.6 (sym-
metrized).

Figure 11. Comparison of the partially relaxed line shapes with
identical relaxation delays which correspond to the experiment and
simulation from Figure 16. Note that the variable delay times are as
follows (from top to bottom): 1, 5, 10, 25, 50, 100, and 200 ms. The
null of the inversion, where there is the greatest sensitivity to the model
utilized, shows excellent agreement.
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The results from our current work show good agreement
between simulations using our model and our experimental data,
as seen in Figures 10 and 11. There is still the possibility of
simulation overlap, and while the work cannot conclusively state
that our model is an exact replication of the dynamics present
in the furanose ring, it can be used to eliminate models that do
not accurately replicate the experimental data. However, the
results from this model have shown the best agreement to date
for replicating dynamically averaged deuterium line shapes from
furanose labeled DNA’s.

The utility of this model also allows for determination of rates
between overall puckering conformations as well. The rate at
which the C2′-D2′′ bond passes over a barrierU0 can also be
estimated following the treatment of Edholm and Blomberg,48

where the “escape” rate or the rate of passage over the barrier
is approximated by,

For our best fit, shown in Figure 10a,b, the simulations have a
potential with equal barrier heights and equal well depths, where
the barrier height isU0 ) 5.5kBT, a puckering amplitude ofq
) 0.4 Å, and a diffusion coefficient ofD ) 9.9 × 108. Using
these parameters in calculating eq 15, we obtain an escape rate
of 0.7× 107 Hz, which is in the intermediate time regime, where
it is expected to observe significant motional averaging for large
amplitude motions. Additionally, it is similar to the rate be-
tween sites when a two-site jump model has been used pre-
viously to describe large amplitude motions in the furanose ring
of C9 from the same DNA sequence,14 whose value was 2.5×
107 Hz.

Our conclusions are that the C3 furanose ring in the DNA
sequence [d(CGC3GAATTC9GCG)]2 is puckering between two

conformations, at a rate of 0.7× 107 Hz, over a potential barrier
of 5.5kBT between the two conformations, and a puckering
amplitude of 0.4 Å. We propose this exact set of parameters of
C3 only as the furanose rings at different positions do not have
identical experimental results. However, C9 has shown large
amplitude motions on the order of 38°. We propose that other
dynamic furanose rings could exhibit similar behavior as C3
and have similar energetics. These sites could have a different
set of specific parameters, but the furanose ring could still be
diffusing through a potential energy surface, rather than exhibit-
ing activated exchange. The C9 line shape has a similar form14

to the simulation in Figure 8b, with a puckering amplitude of
0.5 Å. We conclude that a diffusive model is an improvement
over an activated exchange model for dynamic furanose rings.

The natural extension of this model is to include all members
of a nucleotide subunit from one phosphate group to the next
one, and determine whether inclusion of these substituents
affects the sugar ring motion, and vice versa. Additionally, this
can allow for investigation of the motion of other parts of the
nucleotide, and how the dynamics propagate among them, and
how they are correlated. This is currently being investigated.

Another interesting comparison of dynamical models is to
compare the degree of maximum angular displacement. When
there is a puckering amplitude ofq ) 0.4 Å, the maximum
angular displacement isθ ) 36°. This compares to the angular
displacement ofθ ) 38° for previous work using a two-site
jump to model motionally averaged furanose ring line shapes.14

Additionally, “rigid” line shapes that retain the Pake doublet
form have been successfully simulated by using a two-site jump
of small amplitude (∼10°) to replicate line shapes.29,45 These
are comparable to simulations using our new diffusive model
with a puckering amplitude ofq ) 0.2 Å, which has a maximum
angular displacement ofθ ) 19°.

In addition to aiding in structural studies of nucleic acid
conformation, the conclusions drawn may have a wider impact.
It has been proposed previously that the amplitude of local DNA
dynamics has a correlation to local helical flexibility.27,49

Furanose rings that exhibit large amplitude motions are regions
of increased local conformational flexibility. This increased
conformational flexibility may indicate that the DNA is an active
participant in protein-DNA interactions, where the increased
local flexibility lowers the energy barrier necessary for protein-
DNA binding,27,49again allowing for easier binding to the DNA.
If the motion of the furanose rings can be effectively quantified,
this information may go a long way toward identifying a role
for the internal dynamics in DNA-protein interactions.
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Table 2. Comparison of Spin-Lattice Relaxation Times for
Simulations with Different Relative Barrier Heightsa

form of simulated potential energy surface 〈T1Z〉, ms

equal double barrier with U0 ) 5kBT (2.9 kcal/mol) 34
unequal double barrier withU0,1 ) 5kBT and

U0,2 ) 6kBT (3.6 kcal/mol)
45

unequal double barrier withU0,1 ) 5kBT and
U0,2 ) 7kBT (4.2 kcal/mol)

54

unequal double barrier withU0,1 ) 5kBT and
U0,2 ) 8kBT (4.8 kcal/mol)

58

unequal double barrier withU0,1 ) 5kBT and
U0,2 ) 10kBT (6 kcal/mol)

59

a A series of spin-lattice relaxation times for different potentials.
The potentials are of double well form, where one barrier height remains
constant at 5kBT, while the other varies relative to that value, varied
from 6kBT to 10kBT, as described by eq 15. The constant parameters
are diffusion coefficientD ) 9.9× 108 and puckering amplitude ofq
) 0.4 Å.

rate≈ [-[∂2U(æ)

∂æ2 ]
top

[∂2U(æ)

∂æ2 ]
bottom

]1/2
D

2πkBT
exp(-

Utop

kBT)
(17)

10038 J. Am. Chem. Soc., Vol. 123, No. 41, 2001 Meints et al.


